Generalized relevance LVQ (GRLVQ) with correlation measures for gene expression analysis

نویسندگان

  • Marc Strickert
  • Udo Seiffert
  • Nese Sreenivasulu
  • Winfriede Weschke
  • Thomas Villmann
  • Barbara Hammer
چکیده

A correlation-based similarity measure is derived for generalized relevance learning vector quantization (GRLVQ). The resulting GRLVQ-C classifier makes Pearson correlation available in a classification cost framework where data prototypes and global attribute weighting terms are adapted into directions of minimum cost function values. In contrast to the Euclidean metric, the Pearson correlation measure makes input vector processing invariant to shifting and scaling transforms, which is a valuable feature for dealing with functional data and with intensity observations like gene expression patterns. Two types of data measures are derived from Pearson correlation in order to make its benefits for data processing available in compact prototype classification models. Fast convergence and high accuracies are demonstrated for cDNA-array gene expression data. Furthermore, the automatic attribute weighting of GRLVQ-C is successfully used to rate the functional relevance of analyzed genes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Relevance LVQ with Correlation Measures for Biological Data

Generalized Relevance Learning Vector Quantization (GRLVQ) is combined with correlation-based similarity measures. These are derived from the Pearson correlation coefficient in order to replace the adaptive squared Euclidean distance which is typically used for GRLVQ. Patterns can thus be used without further preprocessing and compared in a manner invariant to data shifting and scaling transfor...

متن کامل

Learning Vector Quantization for Multimodal Data

Learning vector quantization (LVQ) as proposed by Kohonen is a simple and intuitive, though very successful prototype-based clustering algorithm. Generalized relevance LVQ (GRLVQ) constitutes a modification which obeys the dynamics of a gradient descent and allows an adaptive metric utilizing relevance factors for the input dimensions. As iterative algorithms with local learning rules, LVQ and ...

متن کامل

Supervised Neural Gas and Relevance Learning in Learning Vector Quantization

Learning vector quantization (LVQ) as proposed by Kohonen is a simple and intuitive, though very successful prototype—based clustering algorithm.Generalized relevance LVQ (GRLVQ) constitutes a modification which obeys the dynamics of a gradient descent and allows an adaptive metric utilizing relevance factors for the input dimensions. As iterative algorithms with local learning rules, LVQ and m...

متن کامل

Generalized Relevance LVQ for Time Series

An application of the recently proposed generalized relevance learning vector quantization (GRLVQ) to the analysis and modeling of time series data is presented. We use GRLVQ for two tasks: first, for obtaining a phase space embedding of a scalar time series, and second, for short term and long term data prediction. The proposed embedding method is tested with a signal from the wellknown Lorenz...

متن کامل

Relevance matrices in LVQ

We propose a new matrix learning scheme to extend Generalized Relevance Learning Vector Quantization (GRLVQ). By introducing a full matrix of relevance factors in the distance measure, correlations between different features and their importance for the classification scheme can be taken into account. In comparison to the weighted euclidean metric used for GRLVQ, this metric is more powerful to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurocomputing

دوره 69  شماره 

صفحات  -

تاریخ انتشار 2006